.

In recent years, communication between vehicles (V2V) and between vehicles and infrastructure (V2I), cumulatively indicated as V2X, has been investigated as a means to support basic automotive applications, like cruise control, blind spot detection, parking assistance and so on. Currently, the V2V communication protocol is the so-called dedicated short-range communication  (DSRC), which provides a nominal coverage range of about 1 km, with achievable data rates in the order of 2-6 Mbps. V2I communication, instead, makes use of the 4G-LTE connectivity below 6 GHz, enabling a data rate of up to 100 Mbps in high mobility scenarios.  These technologies, however, will not be able to support the massive demand for high data rates that is expected to be required by the next generation of automotive applications, which will include advanced services based on a number of sophisticated sensors (e.g., radars, cameras, LIDARS), to support higher layers of automated driving (e.g., object recognition,object classification, obstacle avoidance).

A possible answer to this growing demand for ultra-high transmission speeds in vehicular networks can be found in the millimeter wave bands which, however,  are subject to high signal attenuation and challenging propagation characteristics.

Therefore, in our works, we started investigating the limits that prevent the direct employment of the existing V2X communication protocols on mmWave links, including:

  • Overhead: In current V2X communication technologies, transmissions are mostly omnidirectional while mmWave links are typically directional, to overcome the isotropic pathloss experienced at high frequencies. However, directional links may require precise alignment of the transmitter and receiver beams, an operation which may increase the latency of the communication.
  • High mobility: A suitable beam pair may not last long enough to allow the completion of a data exchange, due to the high speed of the nodes, thus resulting in transmission errors. Moreover, the increased Doppler effect could make the assumption of channel reciprocity not valid and could impair the feedback over mmWave links, which is a potential point of failure for beam sweeping.
  • Blockage: While signals at lower frequencies can penetrate more easily through buildings, mmWave signals do not penetrate most solid materials. As a result, an obstacle can jeopardize a successful communication even if the automotive nodes are perfectly
  • Channel model: Available measurements at mmWaves in the V2X context are still very limited, and realistic scenarios are indeed hard to simulate. In fact, the increased reflectivity and scattering from common objects and the poor diffraction and penetration capabilities of mmWaves are the main factors preventing the existing lower frequency channel models from being used for an automotive mmWave scenario. Moreover, current models for mmWave cellular systems present many limitations for their applicability to a V2X context, due to the more challenging propagation characteristics of highly mobile vehicular nodes.

We also highlighted possible solutions at the PHY and MAC layers to enable automotive networks to operate at mmWaves and, through a preliminary connectivity and throughput analysis, we showed that the performance of the automotive nodes in highly mobile mmWave scenarios strictly depends on the specific environment in which the vehicles are deployed, and must account for several automotive-specific features such as the vehicle’s speed, the beam tracking periodicity, the node density and the MIMO antenna configuration.


Download here our poster “Coverage and Connectivity Analysis of Millimeter Wave Vehicular Networks”: 

.
Title DateArea
V. Rossi, P. Testolina, M. Giordani, M. Zorzi, “On the Role of Sensor Fusion for Object Detection in Future Vehicular Networks”, Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2021.
arXiv
2021/06Vehicular
A. Varischio, F. Mandruzzato, M. Bullo, M. Giordani, P. Testolina, M. Zorzi, “Hybrid Point Cloud Semantic Compression for Automotive Sensors: A Performance Evaluation”, IEEE International Conference on Communications (ICC), 2021.
arXiv
2021/06Vehicular
D. Wang, M. Giordani, M.-S. Alouini, M. Zorzi, “The Potential of Multi-Layered Hierarchical Non-Terrestrial Networks for 6G”, submitted to the IEEE Vehicular Communications Magazine, 2020.
arXiv
2020/116G
T. Zugno, M. Drago, M. Giordani, M. Polese, M. Zorzi, “NR V2X Communications at Millimeter Waves: An End-to-End Performance Evaluation”, submitted to the IEEE Global Communications Conference (GLOBECOM) , 2020.
arXiv

IEEE Xplore
2020/05Vehicular
M. Drago, T. Zugno, M. Polese, M. Giordani, M. Zorzi, “MilliCar – An ns-3 Module for MmWave NR V2X Networks”, 12th Workshop on ns-3 , June 2020.
arXiv
2020/06Vehicular
F. Mason, M. Giordani, F. Chiariotti, A. Zanella, M. Zorzi, “An Adaptive Broadcasting Strategy for Efficient Dynamic Mapping in Vehicular Networks”, in IEEE Transactions on Wireless Communications (TWC) , June 2020.
arXiv

IEEE Xplore
2020/06Vehicular
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, S. Nakamura, “Enabling Technologies for Future Transportation Systems: an End-to-End Performance Evaluation”, 26th ITS World Congress , October 2019.2019/10Vehicular
M. Giordani, T. Shimizu, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “Path Loss Models for V2V mmWave Communication: Performance Evaluation and Open Challenges”, accepted to the 2nd IEEE Connected and Automated Vehicles Symposium (CAVS) , September 2019.
arXiv

IEEE Xplore
2019/09Vehicular
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “Investigating Value of Information in Future Vehicular Communications”, accepted to the 2nd IEEE Connected and Automated Vehicles Symposium (CAVS) , September 2019.
arXiv

IEEE Xplore
2019/09Vehicular
Tommaso Zugno, Matteo Drago, Marco Giordani, Michele Polese, Michele Zorzi, "Towards Standardization of Millimeter Wave Vehicle-to-Vehicle Networks: Open Challenges and Performance Evaluation", IEEE Communications Magazine, vol. 58, no. 9, pp. 79-85, September 2020.
arXiv

IEEE Xplore
2020/09Vehicular, Simulation
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “A Framework to Assess Value of Information in Future Vehicular Networks ”, 1st ACM MobiHoc Workshop on Technologies, mOdels, and Protocols for Cooperative Connected Cars (TOP-Cars) , Jun. 2019.
arXiv

ACM
2019/06Vehicular
D. Peron, M. Giordani, M. Zorzi, “An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks”, in 30th IEEE Intelligent Vehicles Symposium (IV2019) , June 2019.
arXiv

IEEE Xplore

2019/06Vehicular
T. Higuchi, M. Giordani, A. Zanella, M. Zorzi, Onur Altintas, “Value-Anticipating V2V Communications for Cooperative Perception”, in 30th IEEE Intelligent Vehicles Symposium (IV2019) , June 2019.
IEEE Xplore
2019/06Vehicular
F. Mason, M. Giordani, F. Chiariotti, A. Zanella, M. Zorzi, “Quality-Aware Broadcasting Strategies for Position Estimation in VANETs”, in European Wireless (EW2019) , May 2019.
arXiv

IEEE Xplore
2019/05Vehicular
M. Giordani, A. Zanella, M. Zorzi, “LTE and Millimeter Waves for V2I Communications: an End-to-End Performance Comparison”, IEEE Vehicular Technology Conference (VTC-Spring 2019), Workshop on High Mobility Wireless Communications (HMWC) , Apr. 2019
arXiv

IEEE Xplore
2019/04Vehicular
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “On the Feasibility of Integrating mmWave and IEEE 802.11p for V2V Communications”, IEEE Connected and Automated Vehicles Symposium (CAVS) , Aug. 2018
arXiv

IEEE Xplore
2018/09Vehicular
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “Emerging Trends in Vehicular Communication Networks”, Springer , 20182018/06Vehicular
M. Giordani, A. Zanella, T. Higuchi, O. Altintas, M. Zorzi, “Performance Study of LTE and mmWave in Vehicle-to-Network Communications”, IEEE 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) , June 2018
IEEE Xplore

arXiv
2018/06Vehicular
M. Giordani, M. Rebato, A. Zanella, and M. Zorzi, “Coverage and Connectivity Analysis of Millimeter Wave Vehicular Networks,” Elsevier Ad Hoc Networks , 2018. In press
arXiv

Elsevier
2018/03Vehicular
M. Giordani, M. Rebato, A. Zanella, and M. Zorzi, "Poster: Connectivity Analysis of Millimeter Wave Vehicular Networks," to appear in IEEE Vehicular Networking Conference (VNC) , Torino, Nov. 2017, pp. 41-42.
IEEE Xplore
2017/11Vehicular
M. Giordani, A. Zanella, and M. Zorzi, "Technical Report -- MillimeterWave Communication in Vehicular Networks: Coverage and Connectivity Analysis", 2017
arXiv
2017/05Vehicular
M. Giordani, A. Zanella and M. Zorzi, "Millimeter wave communication in vehicular networks: Challenges and opportunities," in 6th International Conference on Modern Circuits and Systems Technologies (MOCAST) , Thessaloniki, Greece, 2017.
IEEE Xplore
2017/05Vehicular