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OVERVIEW

q Next-generation V2X applications require data rates in the order 
of terabytes per driving hour.

Ø Limit of traditional technologies (e.g., DSRC, LTE).
Ø Millimeter waves: huge rates but unstable propagation.

q Use of beamforming, to balance for the increased pathloss.
q Need for fine and durable alignment of the beam pair.
q Need to TRACK and MONITOR the channel quality.
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Fig. 4: Coverage and connectivity probabilities (P (U)
cov

and P
(U)
C

, respectively) within a slot of duration T
S

, when varying the

BSs density �
b

. An USH path loss model is considered. The dashed lines are drawn from Monte Carlo simulations and the

markers are analytically obtained from Eq. (10) and (12).

show how P
(U)
NL

can be increased by considering shorter slots or slower cars, respectively, due

to the resulting shorter distance that the moving vehicular node spans during the slot.

Remark 1: According to Theorem 2, the preservation of the connectivity during a slot re-

quires that both fine alignment between the endpoints and satisfactory signal quality are jointly

guaranteed. The value of P
(U)
NL

becomes therefore particularly meaningful if weighted by and

constrained with the VN’s coverage probability at the beginning of the slot.
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SYSTEM MODEL

q Multi-lane highway section.
q BSs (either LOS or NLOS) form a 1D Poisson Point Process.
q Consider a measurement-based urban pathloss model.
q Model interference from surrounding BSs.
q Model multi-antenna arrays for directionality.

PERFORMANCE ANALYSIS

Ø GOAL: Stochastic model for characterizing the beam coverage
and connectivity probabilities in mmWave V2X systems.
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Lemma 2: The test VN connects to a BS 2 �
i

, for i 2 {L, N}, with probability

P
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where s 2 {R, U}, i⇤ indicates the opposite LOS/NLOS state with respect to i and b(A
i

(r)) =
p

A
i

(r)2 � R2.

Proof: See Appendix B. ⌅

Lemma 3: Given that the test VN connects to a BS 2 �
i

, for i 2 {L, N}, the PDF ¯f
(s)
i

(r),

s 2 {R, U}, of the distance r between the vehicular node and the serving BS is given by
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Proof: According to the considerations in [22], the proof follows a similar procedure as that

of Lemma 2, and is therefore omitted here. ⌅

B. SINR Coverage Analysis

The SINR coverage probability P
(s)
cov

(�) is defined as the probability that the test VN experi-

ences an SINR larger than a predefined threshold � > 0, i.e., P
(s)
cov

(�) = P[SINR > �]. By using

the law of total probability, P
(s)
cov

(�) for the test VN, attaching to BS n⇤ 2 �
i

, for i 2 {L, N},

is represented as
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] (9)

On the basis of the lemmas and assumptions introduced in the previous sections, we present

the main theorem on the SINR coverage probability.

Theorem 1: At a typical VN, for s 2 {R, U}, according to the considered highway scenario,

the SINR coverage probability P
(s)
cov

(�) for a target SINR threshold � > 0 is given by
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where L(s)

I

j

i

(t) is the Laplace functional of the interference from BSs 2 �
j

, for j 2 {L, N}, to

the test VN, and is expressed as
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Ø CONNECTIVITY: probability of the vehicle not to disconnect 
from its serving BS during a slot of duration TS.
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Theorem 2: For s 2 {R, U}, constraining on the probability that the test VN, moving at

constant speed V , is in a connected state at the beginning of the slot (w.p. P
(s)
cov

(�)), the VN

loses its ability to communicate with its serving BS, at distance r, with probability 1 � P
(s)
C

,

where P
(s)
C is defined as

P
(s)
C

= P (s)
cov

(�) · P
(s)
NL

, (12)

with P
(s)
NL = P[T

L

> T
S

] representing the probability that the VN does not leave the communi-

cation range of its serving BS during the slot, and is expressed, as a function of r, as
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where ⌘ = ⇡/2 �  /2 and  is the beamwidth of the main lobe of the BS.

Proof: See Appendix D. ⌅
The last expression can be easily solved via numerical computation by determining the value r⇤

for which the inequality in (13) is satisfied as an equality. Considering that the right-hand side

of the inequality in (13) is monotonically decreasing in r, we hence can write

P
(s)
NL = P[T

L

> T
S

] =

Z 1

r

⇤
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(r)dr. (14)

IV. NUMERICAL RESULTS

In this section, after introducing our main simulation parameters, we provide some numerical

results based on the analysis presented in Section III, aiming at:

• (i) assessing the validity of the proposed theoretical model (in terms of coverage and

connectivity probabilities) by comparing the analytical results for P
(s)
cov

(�) and P
(s)
C

with

the simulation outcomes and considering a distance-dependent path loss model;

• (ii) providing insights and discussing the impact of several automotive-specific features

(e.g., the vehicles speed, the beam tracking periodicity, the nodes density, the antenna

configuration) in the performance of V2X nodes in highly mobile mmWave networks;

• (iii) comparing the coverage and connectivity performance of vehicles considering both a

rural or an urban path loss characterization, following the models [25] and [26], respectively.

q Measurement reports are periodically exchanged among the nodes so that, at the beginning 
of every slot, vehicles and base stations identify the optimal directions for their respective beams.

q Starting from a connected state, the vehicular node (VN) can either maintain connectivity to the serving 
BS for the whole slot duration, or lose the beam alignment and get disconnected. 

q Vehicles steer beams of width Φ.
q BSs steer beams of width Ѱ.

q Vehicles move at speed V.

BN

VN VN

VN leaves the communication range
of the BS and loses the connection.
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Ø GOAL: Validate the analytical framework through simulations.
Ø GOAL: Discuss the impact of several automotive-specific features in the V2X connectivity performance.

q Numerical and analytical curves match, thus validating the stochastic mathematical framework.
q The connectivity probability (PC) requires alignment between the endnodes and sufficient signal quality.

Ø PC exhibits a maximum for a given density 𝜆"∗ above which the deployment of more BSs results in a 

considerable increase of the system complexity while leading to worse communication performance.
Ø For sparse networks, the connectivity is improved by considering narrow beams, due to the resulting 

higher gain achieved by beamforming.
Ø For dense networks, larger beams should be steered to generate larger connectivity regions.
Ø Pc can be increased by considering slower cars or more periodic tracking operations.

q The considerations for the connectivity results are valid for the throughput analysis as well.

RESULTS

Ø COVERAGE: probability of finding a base station with sufficiently
good channel quality: P[SINR(r) > 𝚪].


